Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Krešimir Molčanov, ${ }^{\text {a }}$ Marijana Radić Stojković, ${ }^{\text {b }}$ Ivo Piantanida ${ }^{\text {b }}$ and Mladen Žinićc ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Physical Chemistry, Rudjer Bošković Institute, POB 180, HR-10002 Zagreb, Croatia, and ${ }^{\text {b }}$ Department of Organic Chemistry, Rudjer Bošković Institute, POB 180, HR-10002 Zagreb, Croatia

Correspondence e-mail: kmolcano@irb.hr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.038$
$w R$ factor $=0.110$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Conformational axial chirality of phenyl N -[2-(acetylamino)biphenyl-4-yl]carbamate

The crystal structure of the title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$, reveals an interesting case of axial conformational chirality. Due to the symmetry requirements of the space group $\left(P 2_{1} / n\right)$, conformational stereoisomers of both P and M helicity are present.

Comment

The crystal structure of the title biphenyl compound, (I), is reported here. Various types of heterocyclic compounds can be prepared via the use of biphenyl precursors. In our study, compound (I) is a key intermediate for the synthesis of a novel class of phenanthridinium derivatives with potentially high biological activity (Radić Stojković et al., 2006). The structure elucidation of these compounds, including that of this biphenyl intermediate, is of great importance for understanding the molecular mechanisms of their biological activities.

(I) $-M$

Received 26 April 2006 Accepted 29 May 2006

Figure 1
The molecular structure of the P conformational enantiomer of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are depicted as spheres of arbitrary radii. Both disorder components of the methyl group C 1 are shown.

Figure 2
A hydrogen-bonded chain of (I), extending in the [101] direction. Hydrogen bonds are indicated by dashed lines. The helicity of each molecule is indicated. One $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is also shown.
of alternating M and P molecules (Fig. 2) related by inversion centres. However, another strong H -atom donor, $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$, uses none of the potential acceptors (two carbonyl O atoms and one ester $\mathrm{O} s p^{3}$ atom), but is involved in an unusual $\mathrm{N}-$ $\mathrm{H} \cdots \pi$ interaction with the C16-C21 phenyl ring. The N1H 1 N group is directed towards atom $\mathrm{C} 19^{\mathrm{v}}$, the $\mathrm{N} \cdots \mathrm{C}$ distance being 3.505 (4) \AA [symmetry operator: (v) $\frac{3}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z$]. There is also a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between atom C 18 and a symmetry-related C9-C14 benzene ring, shown in Fig. 2; the distance between C18 and the ring centroid is 3.581 (6) \AA. The hydrogen-bonded chains are cross-linked into a threedimensional network by four weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

The title compound was prepared by the modified method of Bergmann \& Zervas (1932), according to the procedures of Takamiya et al. (1978), Berkowitz \& Pedersen (1994), Salvatore et al. (2001), Toth et al. (2005) and Woll et al. (2002). N, N-Dimethylaniline ($1.150 \mathrm{ml}, 1.1 \mathrm{~g}$, 9.07 mmol) was added to a stirred solution of 4^{\prime}-aminobiphenyl-2-ylacetamide ($1.14 \mathrm{~g}, 5.04 \mathrm{mmol}$) in anhydrous ethanol (25 ml). To this, a solution of phenyl chloroformate [924.7 (1) $\mu \mathrm{l}, 947 \mathrm{mg}, 6.05 \mathrm{mmol}$] in ethanol (2 ml) was added slowly and the reaction mixture was
refluxed for 2 h . The solvent was then evaporated from the reaction mixture. The reaction mixture was dissolved in ethyl acetate (20 ml), washed with water $(2 \times 20 \mathrm{ml})$ and concentrated to a solid under reduced pressure. The product was purified by recrystallisation from dichloromethane-petroleum ether ($10: 1 \mathrm{v} / \mathrm{v}$) to give 1.51 g of slightly brown crystals of (I) (yield 86%; m.p. 456 K). Crystals of (I) suitable for diffraction analysis were obtained by dissolving the compound (ca 15 mg) in a minimal volume of hot methanol. The vial was sealed with Parafilm, placed in a refrigerator (283 K) and the solvent allowed to evaporate slowly until crystals of suitable quality were observed.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=346.37$
Monoclinic, $P 2_{1} / n$
$a=11.260$ (13) \AA
$b=12.74$ (2) \AA
$c=12.81$ (2) \AA
$\beta=100.76(13)^{\circ}$
$V=1805(5) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
non-profiled $\omega / 2 \theta$ scans
Absorption correction: none
7498 measured reflections
3756 independent reflections
$Z=4$
$Z=4$
$D_{x}=1.275 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\mu=0.7 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.32 \times 0.3 \times 0.2 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0506 P)^{2}\right.$
$+0.2871 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$ 。
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0032 (4)

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 3-\mathrm{N} 1$	$6.5(2)$	$\mathrm{C} 15-\mathrm{N} 2-\mathrm{C} 12-\mathrm{C} 11$	$159.5(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 3$	$-135.2(2)$	$\mathrm{C} 15-\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 17$	$93.9(2)$
$\mathrm{C} 12-\mathrm{N} 2-\mathrm{C} 15-\mathrm{O} 3$	$-176.1(1)$	$\mathrm{N} 2-\mathrm{C} 15-\mathrm{O} 3-\mathrm{C} 16$	$-178.2(1)$

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1^{\text {i }}$	0.91 (2)	1.96 (2)	2.855 (5)	169 (2)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{D} \cdots \mathrm{O}^{\text {ii }}$	0.96	2.39	3.328 (6)	166
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {iii }}$	0.98 (2)	2.57 (2)	3.434 (6)	147 (1)
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {iv }}$	0.99 (2)	2.35 (2)	3.318 (6)	164 (1)
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\text {i }}$	0.97 (2)	2.65 (2)	3.410 (6)	136 (1)

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$;
(ii) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ; \quad$ (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

The H atoms bound to atom C 1 were modelled as a disordered methyl group, with $\mathrm{C}-\mathrm{H}=0.96 \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ and occupancy factors of 0.5 , while all other H atoms were located in a difference electron-density map and refined freely.

organic papers

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to Dr Biserka Kojić-Prodić for valuable suggestions concerning the description of the axial chirality. This study was financed by the Ministry of Science, Education and Sport of the Republic of Croatia (Project Nos. 0098036 and 0098053).

References

Bergmann, M. \& Zervas, L. (1932). Chem. Ber. 65, 1192.

Berkowitz, D. B. \& Pedersen, M. L. (1994). J. Org. Chem. 59, 5476-5478.
Dodziuk, H. (1992). Tetrahedron Asymmetry, 3, 43-50.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

McNaught, A. D. \& Wilkinson, A. (1997). Compendium of Chemical Terminology, The Gold Book, 2nd ed. New York: Blackwell Science
Radić Stojković, M., et al. (2006). Manuscript in preparation.
Salvatore, R. N., Yoon, C. H. \& Jung, K. W. (2001). Tetrahedron, 57, $7785-$ 7811.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Takamiya, H., Bodemer, W. \& Vogt, A. (1978). J. Histochem. Cytochem. 26, 914-920.
Toth, J. L., Trzupek, J. D., Flores, L. V., Kiakos, K., Hartley, J. A., Pennington, W. T. \& Lee, M. (2005). Med. Chem. 1, 13-19.

Woll, M. G., Fisk, J. D., LePlae, P. R. \& Gellman, S. H. (2002). J. Am. Chem. Soc. 124, 12447-12452.

[^0]: © 2006 International Union of Crystallography All rights reserved

